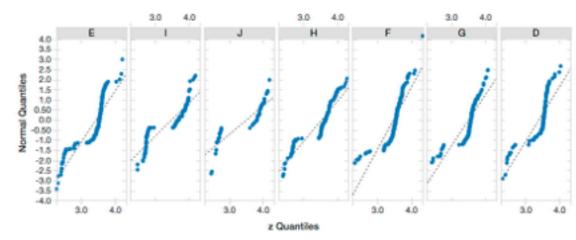
Visualizing big data in the browser using Spark

Hossein Falaki @mhfalaki Spark Summit East – March 18, 2015

Exploratory Visualization

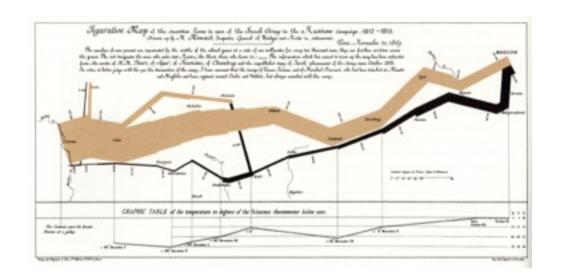

"Critical part of data analysis"

-William S. Cleveland

Put visualization back in the normal workflow of data analysis

regardless of data size.

- Interactive
- Collaborative
- Reproducible



Expository Visualization

Communication is often the bottleneck in data science, and a graph is worth a thousand words.

- Control over details
- Shareable

Requirements

- Interactive
- Collaborative
- Shareable
- Reproducible
- Control over details

Use the browser

Use visualization libraries

Visualization as programming

- For complex tasks point and click may not be enough
- Best expressed with a grammar (API)
- Scripts are reproducible
- Control over all details
- Data scientists are already familiar with these tools

D3.js, Three.js, matplotlib, ggplot, Bokeh, Vincent, ...

Do it in the browser

- Output of these tools can be readily used on the web (PNG, SVG, Canvas, WebGL)
- No need to transfer data and results
- Browser is conducive to collaboration (e.g., Notebooks)
- Separating data manipulation from rendering enables users to freely choose the best tool for each job

Challenges with big data visualization

- 1. Manipulating large data can take a long time
- 2. We have more data points than pixels

Apache Spark can help solve both problems

Challenges

- 1. Manipulating large data can take a long time
 - > Memory
 - > CPU

Reducing latency: caching

Take advantage of memory and storage hierarchy

- Serialized storage levels (for memory)
- Memory & GC tuning

Reducing latency: parallelism

Increase number of CPUs

- > Get more executors with Mesos or Yarn
- > Click a button to increase cluster size in DBC

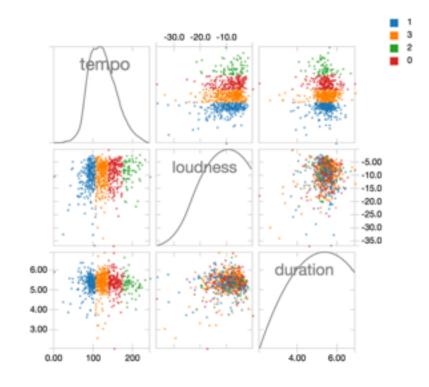
- Control level of parallelism for map and reduce tasks
- Configure spark locality if needed


Challenges

- 1. Manipulating large data can take a long time
- 2. We have more data points than possible pixels
 - > Summarize
 - > Model
 - > Sample

More data than pixels? Summarize

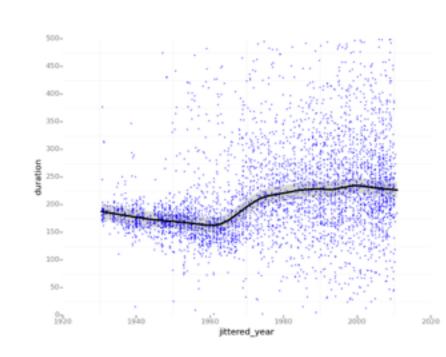
- Extensively used by BI tools
 - > Aggregation
 - > Pivoting
- Most data scientists' nightly jobs summarize data



More data than pixels? Model

MLLib supports a large (and growing) set of distributed algorithms

- Clustering: k-means, GMM, LDA
- Classification and regression:
 LM, DT, NB
- Dimensionality reduction: SVD, PCA
- Collaborative filtering: ALS
- Correlation, hypothesis testing


More data than pixels? Sample

Extensively used in statistics

Spark offers native support for:

- Approximate and exact sampling
- Approximate and exact stratified sampling

Approximate sampling is faster and is good enough in most cases

Demo

Summary

Using Spark we can extend interactive visualization of large data

Reduce interaction latency to seconds

- > Cache data in memory
- > Increase parallelism

To visualize millions of points in the browser

- > Summarize
- > Model
- > Sample

Visualizing big data in the browser using Spark

